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Abstract. Knowledge reduction is one of the most important issues in rough set theory. According to various requirements and
factors, information processing is based on two or more than two universes, other than single universe in many real-life cases.
In this paper, we mainly investigate the knowledge reductions in generalized approximation space over two universes based on
evidence theory. By defining the concepts of object belief and plausibility consistent sets over two universes, the object belief
and plausibility consistent reductions are introduced in generalized approximation space over two universes. At the same time,
the belief and plausibility significance reductions are also presented carefully in this space. Relationships among these proposed
reductions are further studied, and it is proved that the object belief consistent reduction must be belief significance reduction and
the object plausibility consistent reduction must be plausibility significance reduction.
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1. Introduction

Rough set theory proposed by Pawlak [9], is an exten-
sion of the classical set theory and could be regarded
as a mathematical and soft computing tool to handle
imprecision, vagueness and uncertainty in data anal-
ysis. This relatively new soft computing methodology
has received great attention in recent years, and its effec-
tiveness has been confirmed successful applications in
many science and engineering fields, such as pattern
recognition, data mining, image processing, medical
diagnosis and so on [1, 3, 4]. Nowadays, the rough set
theory has attracted more and more researchers. Due to
the existence of uncertainty and complexity of particu-
lar problems, several extensions of the rough set model
have been proposed in terms of various requirements,
such as the variable precision rough set model [32, 35],
rough set model based on tolerance relation [5], the
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Bayesian rough set model [17], the decision-theoretic
rough set model [30], the fuzzy rough set model and
the rough fuzzy set model [2] and others [12, 25].

One of the key issues of knowledge discovery is
knowledge reduction. Usually, there are many objects
and attributes in an information system. While some
objects and attributes are not always needed based on
lower and upper approximation. In representing knowl-
edge, it is desirable to employ a minimum numbers of
attributes without losing important information. A large
variety of approaches have been proposed in the litera-
ture for effective and efficient reduction of knowledge
[8, 11, 18, 34]. In rough set theory, we reduce redundant
attributes and objects in the case of the classification
unchanged.

Another important method used to deal with uncer-
tain problems is the Dempster-Shafer theory of
evidence. It was originated by Dempsters concept
of lower and upper probabilities [1], and it is been
extended by Shafer as a theory [13]. The basic
representational structure is a belief structure in this the-
ory which consists of a family of subsets, called focal
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elements, with associated individual positive weights
summing to one. The primitive numeric measures
induced by the belief structure are a dual pair of belief
and plausibility functions. There are strong relation-
ships between Dempster-Shafer theory of evidence and
rough set theory. It has been checked that various belief
structures are associated with various rough approxi-
mation spaces [16, 21–24, 31], satisfying the different
dual pairs of lower and upper approximation opera-
tors derived from rough approximation spaces may
be applied to illustrate the corresponding dual pairs
of belief and plausibility functions induced by belief
structures.

On the other hand, the expansion of single universe
to two different universes is also very important nowa-
days. Yan et al. [26] studied on the model of rough
set over dual-universe. Shen et al. [14] researched the
variable precision rough set model over two universes
and investigated the properties. Later on that, Yang et
al. investigated the transformation of [27] bipolar fuzzy
rough set model, the fuzzy probabilistic rough set based
on two universities [29], and the bipolar fuzzy rough set
model on two different universes [28]. For simplicity,
more details about recent advancements of rough set
model over two universes can be found in the literatures
[6, 7, 10, 15, 19, 33].

This paper proposes knowledge reductions in gen-
eralized approximation space over two universes by
combining evidence theory and rough set theory, and
investigates the inner relationships of these reductions.
The rest of this paper is organized as follows. Some
preliminary concepts of rough set theory and evidence
theory are introduced in Section 2. In the next section,
we study evidence theory in generalized approxima-
tion space over two universes. In Section 4, we propose
four types of reductions based on evidence theory.
Furthermore, we investigate the connections of these
reductions in Section 5. Finally, the paper is concluded
by providing a summary and discussing the outlook for
further research in Section 6.

2. Preliminaries

In this section,we will review some necessary defini-
tions and concepts required in the sequel of this paper.

2.1. Pawlak rough sets

LetU be a finite and nonempty set called the universe,
and R be an equivalence binary relation on U. The pair

(U, R) is said to be a Pawlak approximation space. The
equivalence relation R partitions U into disjoint subsets
called equivalence classes. The elements in the same
equivalence class are indiscernible. For any X ⊆ U, the
lower and upper approximations are:

R(X) = {x|[x]R ⊆ X}; R(X) = {x|[x]R ∩ X /= ∅}.
The pair (R(X), R(X)) are the Pawlak rough set of X

with respect to (U, R).

2.2. Rough theory based on two universes

Definition 2.1. [20] let R is an arbitrary binary relation
from U to V . for any x ∈ U, y ∈ V , if xRy, i.e. (x, y) ∈
R, then x is called the predecessor of y and y is called
the successor of x, denote:

Rs(x) = {y ∈ V |xRy},
Rp(y) = {x ∈ U|xRy}.

Definition 2.2. [20] Let (U, V, R) be a generalized
approximation space, R is an arbitrary binary relation
from U to V . For any X ⊆ U, Y ⊆ V , x ∈ U, y ∈ V the
lower and upper approximation of X, Y can be defined
as follows:

RU (X) = {y ∈ V |Rp(y) ⊆ X},
RU (X) = {y ∈ V |Rp(y) ∩ X /= ∅};
RV (Y ) = {x ∈ U|Rs(x) ⊆ Y},
RV (Y ) = {x ∈ U|Rs(x) ∩ Y /= ∅}.

The pairs (RU (X), RU (X))and (RV (Y ), RV (Y )) are the
rough sets of X and Y in terms of generalized approxi-
mation space (U, V, R), respectively.

2.3. Evidence theory

In evidence theory, for a universe U, a mass func-
tion can be defined by a map m : 2U → [0, 1], which is
called a basic probability assignment and satisfies two
axioms:

(1) m(∅) = 0

(2)
∑
X⊆U

m(X) = 1

If a subset X ⊆ U, m(X) > 0, then we say X is a focal
element of m, (M, m) is called belief structure. Using
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the basic probability assignment, belief and plausibil-
ity functions of X in Pawlak approximation space are
expressed as

Bel(X) =
∑
Y⊆X

m(Y ),

Pl(X) =
∑

Y∩X /= ∅
m(Y ).

From the above, we can know that mass function
is a basic probability assignment in classical Pawlak
approximation space.

3. Evidence theory in two universes
approximation space

In this section, we will introduce evidence theory into
generalized approximation space over two universes
and discuss how to establish belief and plausibility
functions. In generalized approximation space over two
universes, R is neither a equivalence relation nor a gen-
eral binary relation on the universe U, R is a general
binary relation from U to V .

Definition 3.1. Let (U, V, R) be a generalized approx-
imation space over two universes, R is an arbitrary
binary relation from U to V , Rp(y) = {x ∈ U|xRy, y ∈
V }, U/R = {Rp(y)|y ∈ V }. For any X ∈ U/R, if denote
h(X) = {y ∈ V |Rp(y) = X}, then we can define the
mass function in (U, V, R) as follows:

m1(X) = |h(X)|
|V | .

where mass function m1 : U/R → [0, 1].
The value m1(X) represents the degree of belief that

a specific element of U belongs to set X, but not to
any particular subset of X. A subset X ⊆ U satisfied
m1(X) > 0 is referred as to a focal element. We denote
the family of all focal elements of m1 by M1. The pair
(M1, m1) is called the first type of belief structure.

Definition 3.2. Let (U, V, R) be a generalized approx-
imation space over two universes, R is an arbitrary
binary relation from U to V , Rs(x) = {y ∈ V |xRy, x ∈
U}, V/R = {Rs(x)|x ∈ U}. For any Y ∈ V/R, if denote
k(Y ) = {x ∈ U|Rs(x) = Y}, then we can define the
mass function in (U, V, R) as follows:

m2(Y ) = |k(Y )|
|U| .

where mass function m2 : V/R → [0, 1].

The value m2(Y ) represents the degree of belief that
a specific element of V belongs to set Y , but not to
any particular subset of Y . A subset Y ⊆ V satisfied
m2(Y ) > 0 is referred as to a focal element. We denote
the family of all focal elements of m2 by M2. The pair
(M2, m2) is called the second type of belief structure.

From the above definition, we can know that mass
function m1 in generalized approximation space over
two universes satisfies two basic axioms. That is to
say, for any X ⊆ U, Y ⊆ V in (U, V, R), the following
axioms hold.

(1) m1(∅) = 0

(2)
∑

X∈U/R

m1(X) = 1

The mass function m2 also satisfies two basic axioms,
for any Y ⊆ V , we have:

(1) m2(∅) = 0

(2)
∑

Y∈V/R

m2(Y ) = 1

Associated with each belief structure in Pawlak
approximation space based on classical equivalence
relation, a pair of belief and plausibility functions can
be derived.

Definition 3.3. Let (U, V, R) be a generalized approx-
imation space over two universes. (M1, m1) is a belief
structure in approximation space over two universes,
X ⊆ U, X

′ ∈ U/R, belief function Bel1 : 2U → [0, 1]
and plausibility function Pl1 : 2U → [0, 1] can be
defined as follows:

Bel1(X) =
∑

X
′⊆X,X

′ ∈U/R

m1(X
′
);

Pl1(X) =
∑

X
′∩X /= ∅,X

′ ∈U/R

m1(X
′
).

In the same belief structure, belief function Bel1 and
plausibility function Pl1 have duality property, that is
to say,

Pl1(X) = 1 − Bel1(∼ X).

For any X ∈ U/R, Bel1(X) ≤ Pl1(X).

Definition 3.4. Let (U, V, R) be a generalized approx-
imation space over two universes. (M2, m2) is a belief
structure in approximation space over two universes,
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Y ⊆ V , Y
′ ∈ V/R, belief function Bel2 : 2V → [0, 1]

and plausibility function Pl2 : 2V → [0, 1] can be
defined as follows:

Bel2(Y ) =
∑

Y
′⊆Y,Y

′ ∈V/R

m2(Y
′
);

Pl2(Y ) =
∑

Y
′∩Y /= ∅,Y

′ ∈V/R

m2(Y
′
).

In the same belief structure, belief function Bel2 and
plausibility function Pl2 have duality property, that is
to say,

Pl2(Y ) = 1 − Bel2(∼ Y ).

For any Y ∈ V/R, Bel2(Y ) ≤ Pl2(Y ).

Theorem 3.1. (See[31]) Let (U, A, f ) be an informa-
tion system, for any X ⊆ U, B ⊆ A, denote

BelB(X) = |RB(X)|
|U| ;

PlB(X) = |RB(X)|
|U| ,

then BelB(X) is the belief function and PlB(X) is the
plausibility function of U. where the corresponding
mass function is

mB(Y ) =
{

P(Y ) if Y ∈ U/RB;

0 otherwise.

The detailed description of relationships between
rough set theory and the Dempster-Shafer theory of
evidence can be found in [16, 21, 22].

We can obtain the results in the following
which present that the operators of the lower
and the upper approximation in the generalized
approximation (U, V, R) over two universes induce
a pair of belief and plausibility functions respec-
tively.

Theorem 3.2. Let (U, V, R) be a generalized approxi-
mation space over two universes. X ⊆ U, denote

BelU (X) = |RU (X)|
|V | ,

PlU (X) = |RU (X)|
|V | ,

then BelU (X) and PlU (X) are the belief function and
plausibility function respectively and the corresponding

mass function is

mU (X) =
{ |h(X)|

|V | when X ∈ U/R = {Rp(y)|y ∈ V }
0 otherwise

Proof. This theorem can be proved by Definition 3.1
and Definition 3.3. �

Theorem 3.3. Let (U, V, R) be a generalized approxi-
mation space over two universes. Y ⊆ V , denote

BelV (Y ) = |RV (Y )|
|U| ,

PlV (Y ) = |RV (Y )|
|U| ,

then BelV (Y ) and PlV (Y ) are the belief function and
plausibility function respectively and the corresponding
mass function is

mV (Y ) =
{ |k(Y )|

|U| when Y ∈ V/R = {Rs(x)|x ∈ U}
0 otherwise

Proof. This theorem can be proved by Definition 3.2
and Definition 3.4.

Theorem 3.4. Let (U, V, R) be a generalized approxi-
mation space over two universes. R, S are two general
binary relations from U to V , R ⊆ S, for any X ⊆
U, Y ⊆ V , the following properties are hold.

�

(1) BelSU (X) ≤ BelRU (X) ≤ PlRU (X) ≤ PlSU (X);

�

(2) BelSV (Y ) ≤ BelRV (Y ) ≤ PlRV (Y ) ≤ PlSV (Y ).

Proof. (1)Because R ⊆ S, so we have

SU (X) ⊆ RU (X) and RU (X) ⊆ SU (X)

⇒|SU (X)| ≤ |RU (X)| and |RU (X)| ≤ |SU (X)|

⇒|SU (X)|
|V | ≤ |RU (X)|

|V | and
|RU (X)|

|V | ≤ |SU (X)|
|V |

⇒BelSU (X) ≤ BelRU (X) and PlRU (X) ≤ PlSU (X).

On the other hand, for any X ⊆ U, we have

RU (X) ⊆ RU (X) ⇒ BelRU (X) ≤ PlRU (X).

This item is completed.
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(2) This item can be proved similarly. �

Example 3.1. Given two generalized approximation
spaces over two universes in Table 1 and Table 2.

From the above table, we have:

Rp(y1) = {x2, x6, x9}; Rp(y2) = {x1, x3, x6, x8};
Rp(y3) = {x2, x4, x5, x9}; Rp(y4) = {x1, x5, x9, x10};
Rp(y5) = {x3, x4, x7}; Rp(y6) = {x3, x5, x8};
Rp(y7) = {x4, x7}; Rp(y8) = {x1, x2, x5, x8, x10};
Rp(y9) = {x2, x4, x5, x7, x8}; Rp(y10) = {x1, x6, x9}.

From the above table, we have:

Sp(y1) = {x2, x4, x6, x9, x10}; Sp(y2) = {x1, x3, x5, x6, x8, x9};
Sp(y3) = {x2, x4, x5, x7, x9}; Sp(y4) = {x1, x2, x3, x5, x7, x9, x10};
Sp(y5) = {x1, x3, x4, x7, x9}; Sp(y6) = {x1, x3, x5, x8, x9};
Sp(y7) = {x2, x4, x7}; Sp(y8) = {x1, x2, x5, x7, x8, x10};
Sp(y9) = {x2, x4, x5, x7, x8, x10}; Sp(y10) = {x1, x3, x6, x9}.

From the above two tables, we have R ⊆ S. Let X =
{x1, x2, x3, x5, x7, x8, x10}, then we can easily obtain
the lower and upper approximations of X by using the
Definition 2.2

RU (X) = {y6, y8}, RU (X) = V ;

SU (X) = {y8}, SU (X) = V.

Then, we can gain the belief function and plausibility
function as follows:

BelRU (X) = |RU (X)|
|V | = 1

5
, PlRU (X) = |RU (X)|

|V | = 1;

BelSU (X) = |SU (X)|
|V | = 1

10
, PlSU (X) = |SU (X)|

|V | = 1.

So, the BelSU (X) ≤ BelRU (X) ≤ PlRU (X) ≤ PlSU (X)
holds.

4. The reductions of generalized approximation
space over two universes

Reduction in rough sets theory is very important,
because there are many redundant knowledge in infor

mation system or approximation space. In this sec-
tion, we mainly introduce four types of the methods
of reductions in generalized approximation space over
two universes. The first method is the object belief

consistent reduction; the second method is the object
plausibility consistent reduction; the third method is
the belief significance reduction; the last method is the
plausibility significance reduction. In the following, we
will investigate these reductions one by one.

4.1. The object belief consistent reduction

Definition 4.1. Let (U, V, R) be a generalized approx-
imation space. R is a general binary relation from U

to V , U/R = {Rp(y1), Rp(y2), · · · , Rp(yn)}, for any
X ∈ U/R, U

′ ⊆ U satisfy BelR
U

′ (X) = BelRU (X), then

the U
′

is the object belief consistent set. If for any
U

′′ ⊂ U
′

is not the object belief consistent set. Then
we call U

′
is a object belief consistent reduction.

Theorem 4.1. For any generalized approximation
space (U, V, R) over two universes, there must exist a
object belief consistent reduction.

Proof. For any xi ∈ U(i = 1, 2, · · · , m),BelRU−{xi}(X)

/= BelRU (X), then the universe U is the object belief
consistent reduction.

If exist xi ∈ U, BelRU−{xi}(X) = BelRU (X) holds, then

we need study U
′ = U − {xi}. If for any x

′
i ∈ U

′
,
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Table 1.
A generalized approximation space (U, V, R)

(U, V, R) y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

x1 0 1 0 1 0 0 0 1 0 1
x2 1 0 1 0 0 0 0 1 1 0
x3 0 1 0 0 1 1 0 0 0 0
x4 0 0 1 0 1 0 1 0 1 0
x5 0 0 1 1 0 1 0 1 1 0
x6 1 1 0 0 0 0 0 0 0 1
x7 0 0 0 0 1 0 1 0 1 0
x8 0 1 0 0 0 1 0 1 1 0
x9 1 0 1 1 0 0 0 0 0 1
x10 0 0 0 1 0 0 0 1 0 0

Table 2.
A generalized approximation space (U, V, S)

(U, V, S) y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

x1 0 1 0 1 1 1 0 1 0 1
x2 1 0 1 1 0 0 1 1 1 0
x3 0 1 0 1 1 1 0 0 0 1
x4 1 0 1 0 1 0 1 0 1 0
x5 0 1 1 1 0 1 0 1 1 0
x6 1 1 0 0 0 0 0 0 0 1
x7 0 0 1 1 1 0 1 1 1 0
x8 0 1 0 0 0 1 0 1 1 0
x9 1 1 1 1 1 1 0 0 0 1
x10 1 0 0 1 0 0 0 1 1 0

BelR
U

′−{x′
i
}(X) /= BelRU (X), then U

′
is the object belief

consistent reduction; if exist x
′
i ∈ U

′
, BelR

U
′−{x′

i
}(X) =

BelRU (X) holds, then we need study U
′′ = U

′ − {x′
i},

repeat the above algorithm, we can obtain the object
belief consistent reduction in the end.

Example 4.1. (Continue 3.1) Compute the reductions
of the generalized approximation space (U, V, R) in

terms of belief consistent set. We denote U/R =
{y1, y2, · · · , y10} = {X1, X2, · · · , X10}. In the fol-
lowing, we can compute the lower and upper
approximations of Xi as follows:

RU (X1) = {y1}, RU (X2) = {y2};
RU (X3) = {y3}, RU (X4) = {y4};
RU (X5) = {y5, y7}, RU (X6) = {y6};
RU (X7) = {y7}, RU (X8) = {y8};
RU (X9) = {y7, y9}, RU (X10) = {y10}.

Then, we can know:

BelRU (X1) = |RU (X1)|
|V | = 1

10
, BelRU (X2) = |RU (X2)|

|V | = 1

10
;

BelRU (X3) = |RU (X3)|
|V | = 1

10
, BelRU (X4) = |RU (X2)|

|V | = 1

10
;

BelRU (X5) = |RU (X5)|
|V | = 1

5
, BelRU (X6) = |RU (X6)|

|V | = 1

10
;

BelRU (X7) = |RU (X7)|
|V | = 1

10
, BelRU (X8) = |RU (X8)|

|V | = 1

10
;

BelRU (X9) = |RU (X9)|
|V | = 1

5
, BelRU (X10) = |RU (X10)|

|V | = 1

10
.

In the following, we will remove the object xi one by
one firstly. We remove x4, x8, x10, for any Xi ∈ U/R,
the RU (Xi) do not change, thus BelRU−{x4,x8,x10}(Xi) =
BelRU (Xi) holds, and other objects can not be removed.
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So the object belief consistent reduction of this approx-
imation space is {x1, x2, x3, x5, x6, x7, x9}.

4.2. The object plausibility consistent reduction

Definition 4.2. Let (U, V, R) be a generalized approx-
imation space. R is a general binary relation from U

to V , U/R = {Rp(y1), Rp(y2), · · · , Rp(yn)}, for any
X ∈ U/R, U

′ ⊆ U satisfy PlR
U

′ (X) = PlRU (X), then the

U
′

is the object plausibility consistent set. If for any
U

′′ ⊂ U
′

is not the object plausibility consistent set.
Then we call U

′
is a object plausibility consistent

reduction.

Theorem 4.2. For any generalized approximation
space (U, V, R) over two universes, there must exist a
object plausibility consistent reduction.

Proof. This theorem can be proved similar to Theorem
4.1.

Example 4.2. (Continue 3.1) Compute the reduc-
tions of the generalized approximation space (U, V, R)
in terms of plausibility consistent set. We denote
U/R = {y1, y2, · · · , y10} = {X1, X2, · · · , X10}. In the
following, we can compute the lower and upper approx-
imations of Xi as follows:

RU (X1) = {y1, y2, y3, y4, y8, y9, y10}, RU (X2) = {y1, y2, y4, y5, y6, y8, y9, y10};
RU (X3) = {y1, y3, y4, y5, y6, y7, y8, y9, y10}, RU (X4) = {y1, y2, y3, y4, y6, y8, y9, y10};
RU (X5) = {y2, y3, y5, y6, y7, y9}, RU (X6) = {y2, y3, y4, y5, y6, y8, y9};
RU (X7) = {y3, y5, y7, y9}, RU (X8) = {y1, y2, y3, y4, y6, y8, y9, y10};
RU (X9) = {y1, y2, y3, y4, y5, y6, y7, y8, y9}, RU (X10) = {y1, y2, y3, y4, y8, y10}.

Then, we can know:

PlRU (X1) = |RU (X1)|
|V | = 7

10
, PlRU (X2) = |RU (X2)|

|V | = 4

5
;

PlRU (X3) = |RU (X3)|
|V | = 9

10
, PlRU (X4) = |RU (X2)|

|V | = 4

5
;

PlRU (X5) = |RU (X5)|
|V | = 3

5
, PlRU (X6) = |RU (X6)|

|V | = 7

10
;

PlRU (X7) = |RU (X7)|
|V | = 2

5
, PlRU (X8) = |RU (X8)|

|V | = 4

5
;

PlRU (X9) = |RU (X9)|
|V | = 9

10
, PlRU (X10) = |RU (X10)|

|V | = 3

5
.

In the following, remove x7, x10, for any Xi ∈ U/R,
the RU (Xi) do not change, thus PlRU−{x7,x10}(Xi) =
PlRU (Xi). By computing, we know that other objects
can not be removed, so the object plausibility consistent
reduction is {x1, x2, x3, x4, x5, x6, x8, x9}.

4.3. The belief significance reduction

In rough set theory, we also can investigate reduc-
tions in the point of view of significance of object, that
is to say, we remove the objects which are not signif-
icant or remove the objects which are less significant.
In this subsection, we mainly study the reductions in
the generalized approximation (U, V, R) over two uni-
verses in terms of belief significance of the objects.
Our idea about reduction is that convert the values of
belief significance into [0,1]. Then we save the objects
which belief significance are more than 0 and remove
the objects which belief significance equals to 0. So the
objects set which element’s belief significance are more
than 0 is reduction in the generalized approximation
space (U, V, R) over two universes.

Definition 4.3. Let (U, V, R) be a generalized approx-
imation space. R is a general binary relation from U
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to V , denote U/R = {Rp(y1), Rp(y2), · · · , Rp(yn)} =
{X1, X2, · · · , Xn}, for any Xj ∈ U/R (j = 1, 2,

· · · , n), xi ∈ U(i = 1, 2, · · · , m), the belief signifi-
cance of object xi is

IBel(xi) =

n∑
j=1

|BelRU (Xj) − BelRU−{xi}(Xj)|

|V | .

From the definition 4.3, we can know that the
belief significance of object xi have boundary, i.e.,
0 ≤ IBel(xi) ≤ 1.

Definition 4.4. Let (U, V, R) be a generalized approxi-
mation space. R is a general binary relation from U to
V , the belief significance reduction of the generalized
approximation space (U, V, R) over two universes is the
set which consist of all objects which belief significance
are more than 0.

Theorem 4.3. For any generalized approximation
space (U, V, R) over two universes, there must exist a
belief significance reduction.

Proof. This theorem can be proved similar to Theorem
4.1.

Example 4.3. (Continue 3.1) Compute the reduc-
tion of the generalized approximation space (U, V, R)
in terms of belief significance. We denote U/R =
{y1, y2, · · · , y10} = {X1, X2, · · · , X10}. In the follow-
ing, we can compute the belief significance of xi as
follows:

IBel(x1) = | 1
10 − 1

5 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
5 − 1

5 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
5 − 1

5 | + | 1
10 − 1

10 |
10

= 0.01;

IBel(x2) = | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
5 − 1

5 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
5 − 1

5 | + | 1
10 − 1

5 |
10

= 0.01;

IBel(x3) = | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
5 − 1

5 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
10 − 1

5 | + | 1
5 − 2

5 | + | 1
10 − 1

10 |
10

= 0.03;

IBel(x4) = | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
5 − 1

5 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
5 − 1

5 | + | 1
10 − 1

10 |
10

= 0;

IBel(x5) = | 1
10 − 1

10 | + | 1
10 − 1

5 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
5 − 1

5 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
10 − 1

10 | + | 1
5 − 1

5 | + | 1
10 − 1

10 |
10

= 0.01;

similarly, we can get IBel(x6) = 0.01; IBel(x7) = 0.01;
IBel(x8) = 0; IBel(x9) = 0.03; IBel(x10) = 0.

So the reduction of the generalized approximation space
(U, V, R) over two universes in terms of belief significance is
{x1, x2, x3, x5, x6, x7, x9}.

4.4. The plausibility significance reduction

In this subsection, we mainly study the reduction based on
the plausibility significance, we save the objects which plau-
sibility significance are more than 0 and remove the objects
which plausibility significance equal to 0. So the objects set
which element’s plausibility significance are more than 0 is
reduction in the generalized approximation space (U, V, R)
over two universes.

Definition 4.5. Let (U, V, R) be a generalized approx-
imation space. R is a general binary relation from
U to V , denote U/R = {Rp(y1), Rp(y2), · · · , Rp(yn)} =
{X1, X2, · · · , Xn}, for any Xj ∈ U/R(j = 1, 2, · · · , n), xi ∈
U(i = 1, 2, · · · , m), the plausibility significance of object xi

is

IPl(xi) =

n∑
j=1

|PlRU (Xj) − PlRU−{xi}(Xj)|

|V | .

From the definition 4.3, we can know that the plausibility
significance of object xi have boundary, i.e., 0 ≤ IPl(xi) ≤ 1.

Definition 4.4. Let (U, V, R) be a generalized approximation
space. R is a general binary relation from U to V , the plausi-
bility significance reduction of the generalized approximation
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space (U, V, R) over two universes is the set which consist of
all objects which plausibility significance are more than 0.
Theorem 4.4. For any generalized approximation space
(U, V, R) over two universes, there must exist a plausibility
significance reduction.

Proof. This theorem can be proved similar to Theorem 4.1.
Example 4.4. (Continue 3.1) Compute the reductions of the
generalized approximation space (U, V, R) in terms of plau-
sibility significance. We denote U/R = {y1, y2, · · · , y10} =
{X1, X2, · · · , X10}. In the following, we can compute the
plausibility significance of xi as follows:

IPl(x1) = | 7
10 − 7

10 | + | 8
10 − 7

10 | + | 9
10 − 9

10 | + | 8
10 − 7

10 | + | 6
10 − 6

10 | + | 7
10 − 7

10 | + | 4
10 − 4

10 | + | 8
10 − 7

10 | + | 9
10 − 9

10 | + | 6
10 − 5

10 |
10

= 0.04;

IPl(x2) = | 7
10 − 6

10 | + | 8
10 − 8

10 | + | 9
10 − 9

10 | + | 8
10 − 8

10 | + | 6
10 − 6

10 | + | 7
10 − 7

10 | + | 4
10 − 4

10 | + | 8
10 − 7

10 | + | 9
10 − 8

10 | + | 6
10 − 6

10 |
10

= 0.03;

IPl(x3) = | 7
10 − 7

10 | + | 8
10 − 7

10 | + | 9
10 − 9

10 | + | 8
10 − 8

10 | + | 6
10 − 4

10 | + | 7
10 − 6

10 | + | 4
10 − 4

10 | + | 8
10 − 8

10 | + | 9
10 − 9

10 | + | 6
10 − 6

10 |
10

= 0.04;

IPl(x4) = | 7
10 − 7

10 | + | 8
10 − 8

10 | + | 9
10 − 7

10 | + | 8
10 − 8

10 | + | 6
10 − 5

10 | + | 7
10 − 7

10 | + | 4
10 − 3

10 | + | 8
10 − 8

10 | + | 9
10 − 9

10 | + | 6
10 − 6

10 |
10

= 0.04;

IPl(x5) = | 7
10 − 7

10 | + | 8
10 − 8

10 | + | 9
10 − 8

10 | + | 8
10 − 6

10 | + | 6
10 − 6

10 | + | 7
10 − 5

10 | + | 4
10 − 4

10 | + | 8
10 − 8

10 | + | 9
10 − 9

10 | + | 6
10 − 6

10 |
10

= 0.05;

similarly, we can get IPl(x6) = 0.02; IPl(x7) = 0; IPl(x8) =
0.02; IPl(x9) = 0.04; IPl(x10) = 0.

So the reduction of the generalized approximation space
(U, V, R) over two universes in terms of plausibility signifi-
cance is {x1, x2, x3, x4, x5, x6, x8, x9}.

In this section, we only discussed the reductions based on
the universe U, and the reduction based on V in general-
ized approximation space (U, V, R) over two universes can be
obtain similarly.

5. The relationships of these reductions

Theorem 5.1. An object belief consistent reduction is belief
significance reduction, and belief significance reduction is
object belief consistent reduction.

Proof. If U
′
is the object belief consistent reduction of the gen-

eralized approximation space (U, V, R) over two universes,
then we have BelR

U
′ (X) = BelRU (X), so, for any xi ∈ U

′
, Xj ∈

U/R, so |BelRU (Xj) − BelRU−{xi}(Xj)| ≥ 0, hence we have

IBel(xi) =

n∑
j=1

|BelR
U

(Xj )−BelR
U−{xi}(Xj )|

|V | ≥ 0. Consequently, the U
′

is the belief significance reduction.
On the other hand, if U

′
is the belief significance reduction

of the generalized approximation space (U, V, R) over two

universes, for any xi, IBel(xi) =

n∑
j=1

|BelR
U

(Xj )−BelR
U−{xi}(Xj )|

|V | =
0, then |BelRU (Xj) − BelRU−{xi}(Xj)| = 0, so
BelRU−{xi}(X) = BelRU (X) , hence BelR

U
′ (X) = BelRU (X),

where U
′

is the object set removed all objects which
IBel(xi) = 0

Theorem 5.2. An object plausibility consistent reduction is
plausibility significance reduction, and plausibility signifi-
cance reduction is the object plausibility consistent reduction.

Proof. According to Theorem 5.1, this theorem can be proved
similarly.

6. Conclusions

In this paper, we combined the rough set theory and
evidence theory to propose four types of reductions in gener-
alized approximation space based on two universes. The first
type of reduction is the object belief consistent reduction; the
second type of reduction is the object plausibility consistent
reduction the third type of reduction is the belief significance
reductions; the last type of reduction is the plausibility signif-
icance reductions. Moreover, we studied the relationships of
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these reductions. There reductions are convenient for mining
the useful knowledge in generalized approximation space.
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